The Gloster Meteor was the first British jet fighter and the Allies’ only jet aircraft to engage in combat operations during the Second World War. The Meteor’s development was heavily reliant on its ground-breaking turbojet engines, pioneered by Frank Whittle and his company, Power Jets Ltd. Development of the aircraft began in 1940, although work on the engines had been under way since 1936. The Meteor first flew in 1943 and commenced operations on 27 July 1944 with No. 616 Squadron RAF. The Meteor was not a sophisticated aircraft in its aerodynamics, but proved to be a successful combat fighter. Gloster’s 1946 civil Meteor F.4 demonstrator G-AIDC was the first civilian-registered jet aircraft in the world. Several major variants of the Meteor incorporated technological advances during the 1940s and 1950s. Thousands of Meteors were built to fly with the RAF and other air forces and remained in use for several decades.

The Meteor saw limited action in the Second World War. Meteors of the Royal Australian Air Force (RAAF) fought in the Korean War. Several other operators such as Argentina, Egypt and Israel flew Meteors in later regional conflicts. Specialised variants of the Meteor were developed for use in photographic aerial reconnaissance and as night fighters.

The Meteor was also used for research and development purposes and to break several aviation records. On 7 November 1945, the first official airspeed record by a jet aircraft was set by a Meteor F.3 at 606 miles per hour (975 km/h). In 1946, this record was broken when a Meteor F.4 reached a speed of 616 miles per hour (991 km/h). Other performance-related records were broken in categories including flight time endurance, rate of climb, and speed. On 20 September 1945, a heavily modified Meteor I, powered by two Rolls-Royce Trent turbine engines driving propellers, became the first turboprop aircraft to fly. On 10 February 1954, a specially adapted Meteor F.8, the “Meteor Prone Pilot”, which placed the pilot into a prone position to counteract inertial forces, took its first flight.

In the 1950s, the Meteor became increasingly obsolete as more nations developed jet fighters, many of these newcomers having adopted a swept wing instead of the Meteor’s conventional straight wing; in RAF service, the Meteor was replaced by newer types such as the Hawker Hunter and Gloster Javelin. As of 2018, two Meteors, G-JSMA and G-JWMA, remain in active service with the Martin-Baker company as ejection seat testbeds. One further aircraft in the UK remains airworthy, as does another in Australia.

Development
Origins
The development of the turbojet-powered Gloster Meteor was a collaboration between the Gloster Aircraft Company and Frank Whittle’s firm, Power Jets Ltd. Whittle formed Power Jets Ltd in March 1936 to develop his ideas of jet propulsion, Whittle himself serving as the company’s chief engineer. For several years, attracting financial backers and aviation firms prepared to take on Whittle’s radical ideas was difficult; in 1931, Armstrong-Siddeley had evaluated and rejected Whittle’s proposal, finding it to be technically sound but at the limits of engineering capability. Securing funding was a persistently worrying issue throughout the early development of the engine. The first Whittle prototype jet engine, the Power Jets WU, began running trials in early 1937; shortly afterwards, both Sir Henry Tizard, chairman of the Aeronautical Research Committee, and the Air Ministry gave the project their support.
On 28 April 1939, Whittle made a visit to the premises of the Gloster Aircraft Company, where he met several key figures, such as George Carter, Gloster’s chief designer. Carter took a keen interest in Whittle’s project, particularly when he saw the operational Power Jets W.1 engine; Carter quickly made several rough proposals of various aircraft designs powered by the engine. Independently, Whittle had also been producing several proposals for a high-altitude jet-powered bomber; following the start of the Second World War and the Battle for France, a greater national emphasis on fighter aircraft arose. Power Jets and Gloster quickly formed a mutual understanding around mid-1939.
In spite of ongoing infighting between Power Jets and several of its stakeholders, the Air Ministry contracted Gloster in late 1939 to manufacture a prototype aircraft powered by one of Whittle’s new turbojet engines. The single-engined proof-of-concept Gloster E28/39, the first British jet-powered aircraft, conducted its maiden flight on 15 May 1941, flown by Gloster’s chief test pilot, Flight Lieutenant Philip “Gerry” Sayer. The success of the E.28/39 proved the viability of jet propulsion, and Gloster pressed ahead with designs for a production fighter aircraft. Due to the limited thrust available from early jet engines, it was decided that subsequent production aircraft would be powered by a pair of turbojet engines.
In 1940, for a “military load” of 1,500 lb (680 kg), the Royal Aircraft Establishment (RAE) had advised that work on an aircraft of 8,500 lb (3,900 kg) all-up weight, with a total static thrust of 3,200 lbf (14 kN) should be started, with an 11,000 lb (5,000 kg) design for the expected, more powerful, W.2 and axial engine designs. George Carter’s calculations based on the RAE work and his own investigations were that a 8,700-to-9,000-pound (3,900-to-4,100-kilogram) aircraft with two or four 20 mm cannons and six 0.303 machine guns would have a top speed of 400–431 miles per hour (644–694 km/h) at sea level and 450–470 miles per hour (720–760 km/h) at 30,000 feet (9,100 m). In January 1941 Gloster were told by Lord Beaverbrook that the twin jet fighter was of “unique importance”, and that the company was to stop work on a night-fighter development of their F.9/37 to Specification F.18/40.

Prototypes
In August 1940, Carter presented Gloster’s initial proposals for a twin-engined jet fighter with a tricycle undercarriage. On 7 February 1941, Gloster received an order for twelve prototypes (later reduced to eight) under Specification F9/40. A letter of intent for the production of 300 of the new fighter, initially to be named Thunderbolt, was issued on 21 June 1941; to avoid confusion with the USAAF Republic P-47 Thunderbolt which had been issued with the same name to the RAF in 1944, the aircraft’s name was subsequently changed to Meteor. During the aircraft’s secretive development, employees and officials made use of the codename Rampage to refer to the Meteor, as similarly the de Havilland Vampire would initially be referred to as the Spider Crab. Test locations and other key project information were also kept secret.
Although taxiing trials were carried out in 1942, it was not until the following year that any flights took place due to production and approval holdups with the Power Jets W.2 engine powering the Meteor. On 26 November 1942 production of the Meteor was ordered to stop due to the delays at subcontractor Rover, which was struggling to manufacture the W.2 engines on schedule; considerable interest was shown in Gloster’s E.1/44 proposal for a single-engine fighter, unofficially named Ace. Gloster continued development work on the Meteor and the production-stop order was overturned in favour of the construction of six (later increased to eight) F9/40 prototypes alongside three E.1/44 prototypes. Rover’s responsibilities for development and production of the W.2B engine were also transferred to Rolls-Royce that year.
On 5 March 1943, the fifth prototype, serial DG206, powered by two substituted de Havilland Halford H.1 engines owing to problems with the intended W.2 engines, became the first Meteor to become airborne at RAF Cranwell, piloted by Michael Daunt. On the initial flight, an uncontrollable yawing motion was discovered, which led to a redesigned larger rudder; however, no difficulties had been attributed to the groundbreaking turbojet propulsion. Only two prototypes flew with de Havilland engines because of their low flight endurance. Before the first prototype aircraft had even undertaken its first flight, an extended order for 100 production-standard aircraft had been placed by the RAF.
The first Whittle-engined aircraft, DG205/G, flew on 12 June 1943 (later crashing during takeoff on 27 April 1944) and was followed by DG202/G on 24 July. DG202/G was later used for deck handling tests aboard aircraft carrier HMS Pretoria Castle. DG203/G made its first flight on 9 November 1943, later becoming a ground instructional airframe. DG204/G, powered by Metrovick F.2 engines, first flew on 13 November 1943; DG204/G was lost in an accident on 4 January 1944, the cause believed to have been an engine compressor failure due to overspeed. DG208/G made its début on 20 January 1944, by which time the majority of design problems had been overcome and a production design had been approved. DG209/G was used as an engine testbed by Rolls-Royce, first flying on 18 April 1944. DG207/G was intended to be the basis for the Meteor F.2 with de Havilland engines, but it did not fly until 24 July 1945, at which time the Meteor 3 was in full production and de Havilland’s attention was being redirected to the upcoming de Havilland Vampire; consequently the F.2 was cancelled.

Into Production
On 12 January 1944, the first Meteor F.1, serial EE210/G, took to the air from Moreton Valence in Gloucestershire. It was essentially identical to the F9/40 prototypes except for the addition of four nose-mounted 20 mm (.79 in) Hispano Mk V cannon and some changes to the canopy to improve all-round visibility. Due to the F.1’s similarity to the prototypes, they were frequently operated in the test program to progress British understanding of jet propulsion, and it took until July 1944 for the aircraft to enter squadron service. EE210/G was later sent to the U.S. for evaluation in exchange for a pre-production Bell YP-59A Airacomet, the Meteor being flown first by John Grierson at Muroc Army Airfield on 15 April 1944.
Originally 300 F.1s were ordered, but the total produced was reduced to 20 aircraft as the follow-on orders had been converted to the more advanced models. Some of the last major refinements to the Meteor’s early design were trialled using this first production batch, and what was to become the long-term design of the engine nacelles was introduced upon EE211. The original nacelles had been discovered by the RAE to suffer from compressibility buffeting at higher speeds, causing increased drag; the re-designed longer nacelles eliminated this and provided an increase in the Meteor’s maximum speed. The lengthened nacelles were introduced on the final fifteen Meteor IIIs. EE215 was the first Meteor to be fitted with guns; EE215 was also used in engine reheat trials, the addition of reheat increasing top speed from 420 mph to 460 mph. and was later converted into the first two-seat Meteor. Due to the radical differences between jet-powered aircraft and those that it replaced, a special Tactical Flight or T-Flight unit was established to prepare the Meteor for squadron service, led by Group Captain Hugh Joseph Wilson. The Tactical Flight was formed at Farnborough in May 1944, the first Meteors arriving the following month, upon which both tactical applications and limitations were extensively explored.
On 17 July 1944, the Meteor F.1 was cleared for service use. Shortly afterwards, elements of the Tactical Flight and their aircraft were transferred to operational RAF squadrons. The first deliveries to No. 616 Squadron RAF, the first operational squadron to receive the Meteor, began in July 1944. When the F.2 was cancelled, the Meteor F.3 became the immediate successor to the F.1 and alleviated some of the shortcomings of the F.1. In August 1944, the first F.3 prototype flew; early F.3 production aircraft were still fitted with the Welland engine as the Derwent engine’s production was just starting at this point. A total of 210 F.3 aircraft were produced before they were in turn superseded by production of the Meteor F.4 in 1945.
Several Meteor F.3s were converted into navalised aircraft. The adaptations included a strengthened undercarriage and arrester hook. Operational trials of the type took place aboard HMS Implacable. The trials included carrier landings and takeoffs. Performance of these naval prototype Meteors proved to be favourable, including takeoff performance, leading to further trials with a modified Meteor F.4 fitted with folding wings; a ‘clipped wing’ was also adopted. The Meteor later entered service with the Royal Navy, but only as a land-based trainer, the Meteor T.7, to prepare pilots of the Fleet Air Arm for flying other jet aircraft such as the de Havilland Sea Vampire.
While various marks of Meteor had been introduced by 1948, they had remained very similar to the prototypes of the Meteor; consequently, the performance of the Meteor F.4 was beginning to be eclipsed by new jet designs. Gloster therefore embarked on a redesign programme to produce a new version of the Meteor with better performance. Designated Meteor F.8, this upgraded variant was a potent fighter aircraft, forming the bulk of RAF Fighter Command between 1950 and 1955. The Meteor continued to be operated in a military capacity by several nations into the 1960s.

Night Fighter
To replace the increasingly obsolete de Havilland Mosquito as a night fighter, the Meteor was adapted to serve in the role as an interim aircraft. Gloster had initially proposed a night fighter design to meet the Air Ministry specification for the Mosquito replacement, based on the two seater trainer variant of the Meteor, with the pilot in the front seat and the navigator in the rear. Once accepted however, work on the project was swiftly transferred to Armstrong Whitworth to perform both the detailed design process and production of the type; the first prototype flew on 31 May 1950. Although based on the T.7 twin seater, it used the fuselage and tail of the F.8, and the longer wings of the F.3. An extended nose contained the AI Mk 10 (the 1940s Westinghouse SCR-720) Air Intercept radar. As a consequence the 20 mm cannons were moved into the wings, outboard of the engines. A ventral fuel tank and wing mounted drop tanks completed the Armstrong Whitworth Meteor NF.11.
As radar technology developed, a new Meteor night fighter was developed to use the improved US-built APS-21 system. The NF.12 first flew on 21 April 1953. It was similar to the NF.11 but had a nose section 17 inches (43 cm) longer; the fin was enlarged to compensate for the greater keel area of the enlarged nose and to counter the airframe reaction to the sideways oscillating motion of the radar scanner which caused difficulty aiming the guns, an anti-tramp motor operating on the rudder was fitted midway up the front leading edge of the fin. The NF.12 also had the new Rolls-Royce Derwent 9 engines and the wings were reinforced to handle the new engine. Deliveries of the NF.12 started in 1953, with the type entering squadron service in early 1954, equipping seven squadrons (Nos 85, 25, 152, 46, 72, 153 and 64); the aircraft was replaced over 1958–1959.
The final Meteor night fighter was the NF.14. First flown on 23 October 1953, the NF.14 was based on the NF.12 but had an even longer nose, extended by a further 17 inches to accommodate new equipment, increasing the total length to 51 ft 4 in (15.65 m) and a larger bubble canopy to replace the framed T.7 version. Just 100 NF.14s were built; they first entered service in February 1954 beginning with No. 25 Squadron and were being replaced as early as 1956 by the Gloster Javelin. Overseas, they remained in service a little longer, serving with No. 60 Squadron at Tengah, Singapore until 1961. As the NF.14 was replaced, some 14 were converted to training aircraft as the NF(T).14 and given to No. 2 Air Navigation School on RAF Thorney Island until transferring to No. 1 Air Navigation School at RAF Stradishall where they served until 1965.


Design
Overview
The first operational version of the Meteor, designated as the Meteor F.1, apart from the minor airframe refinements, was a straightforward ‘militarisation’ of the earlier F9/40 prototypes. The dimensions of the standard Meteor F.1 were 41 ft 3 in (12.57 m) long with a span of 43 ft 0 in (13.11 m), with an empty weight of 8,140 lb (3,690 kg) and a maximum takeoff weight of 13,795 lb (6,257 kg). Despite the revolutionary turbojet propulsion used, the design of the Meteor was relatively orthodox and did not take advantage of many aerodynamic features used on other, later jet fighters, such as swept wings; the Meteor shared a broadly similar basic configuration to its German equivalent, the Messerschmitt Me 262, which was also aerodynamically conventional.
It was an all-metal aircraft with a tricycle undercarriage and conventional low, straight wings with mid-mounted turbojet engines and a high-mounted tailplane clear of the jet exhaust. The Meteor F.1 exhibited some problematic flying characteristics typical of early jet aircraft; it suffered from stability problems at high transonic speeds, large trim changes, high stick forces and self-sustained yaw instability (snaking) caused by airflow separation over the thick tail surfaces. The longer fuselage of the Meteor T.7, a two-seater trainer, significantly reduced the aerodynamic instability that the early Meteors were known for.
Later Meteor variants would see a large variety of changes from the initial Meteor F.1 introduced to service in 1944. Much attention was given to raising the aircraft’s top speed, often by improving the airframe’s aerodynamic qualities, incorporating the latest engine developments, and increasing the strength of the airframe. The Meteor F.8, which emerged in the late 1940s, was considered to have substantially improved performance over prior variants; the F.8 was reportedly the most powerful single-seat aircraft flying in 1947, capable of ascending to 40,000 feet (12,000 m) within five minutes.

Construction
From the outset, each Meteor was constructed from several modular sections or separately produced units, a deliberate design choice to allow for production to be dispersed and for easy disassembly for transport. Each aircraft comprised five main sections: nose, forward fuselage, central section, rear fuselage and tail units; the wings were also built out of lengthwise sections. The forward section contained the pressure cabin, gun compartments, and forward undercarriage. The centre section incorporated much of the structural elements, including the inner wing, engine nacelles, fuel tank, ammunition drums, and main undercarriage. The rear fuselage was of a conventional semi-monocoque structure. Various aluminium alloys were the primary materials used throughout the structure of the Meteor, such as the stressed duralumin skin.
Across the Meteor’s production life, various different companies were subcontracted to manufacture aircraft sections and major components; due to the wartime workload on producing fighter aircraft such as the Hawker Hurricane and Hawker Typhoon, neither Gloster nor the wider Hawker Siddeley Group were able to internally meet the production demand of 80 aircraft per month. Bristol Tramways produced the forward fuselage of the aircraft, the Standard Motor Company manufactured the central fuselage and inner wing sections, the Pressed Steel Company produced the rear fuselage, and Parnall Aircraft made the tail unit. Other main subcontractors included Boulton Paul Aircraft, Excelsior Motor Radiator Company, Bell Punch, Turner Manufacturing Company, and Charlesworth Bodies; as many of these firms had little or no experience producing aircraft, both quality and interchangeability of components were maintained by contractually enforced adherence to Gloster’s original drawings.
From the Meteor F.4 onwards, Armstrong Whitworth began completing whole units at their Coventry facility in addition to Gloster’s own production line. Belgian aviation firm Avions Fairey also produced the Meteor F.8 under licence from Gloster for the Belgian Air Force; a similar licence manufacturing arrangement was made with Dutch company Fokker to meet the Royal Netherlands Air Force’s order.

(Photo: Gilbert-Brooks)

Engines
The Meteor F.1 was powered by two Rolls-Royce Welland turbojet engines, Britain’s first production jet engines, which were built under licence from Whittle’s designs. The Meteor embodied the advent of practical jet propulsion; in the type’s service life, both military and civil aviation manufacturers rapidly integrated turbine engines into their designs, favouring its advantages such as smoother running and greater power output. The Meteor’s engines were considerably more practical than those of the German Me 262 as, unlike the Me 262, the engines were embedded into the wing in nacelles between the front and rear spars rather than underslung, saving some weight due to shorter landing gear legs and less massive spars.
The W.2B/23C engines upon which the Welland was based produced 1,700 lbf (7.6 kN) of thrust each, giving the aircraft a maximum speed of 417 mph (671 km/h) at 9,800 feet (3,000 m) and a range of 1,000 miles (1,600 km). It incorporated a hydraulically driven engine starter developed by Rolls-Royce, which was automated following the press of a starter button in the cockpit. The engines also drove hydraulic and vacuum pumps as well as a generator via a Rotol gearbox fixed on the forward wing spar; the cockpit was also heated by bleed air from one of the engines. The acceleration rate of the engines was manually controlled by the pilot; rapid engine acceleration would frequently induce compressor stalls early on; the likelihood of compressor stalls was effectively eliminated upon further design refinements of both the Welland engine and the Meteor itself. At high speeds the Meteor had a tendency to lose directional stability, often during unfavourable weather conditions, leading to a ‘snaking’ motion; this could be easily resolved by throttling back to reduce speed.
Based upon designs produced by Power Jets, Rolls-Royce produced more advanced and powerful turbojet engines. Beyond numerous improvements made to the Welland engine that powered the early Meteors, Rolls-Royce and Power Jets collaborated to develop the more capable Derwent engine, which as the Rover B.26 had undergone a radical re-design from the W.2B/500 while at Rover. The Derwent engine, and the re-designed Derwent V based on the Nene, was installed on many of the later production Meteors; the adoption of this new powerplant led to considerable performance increases. The Meteor often served as the basis for the development of other early turbojet designs; a pair of Meteor F.4s were sent to Rolls-Royce to aid in their experimental engine trials, RA435 being used for reheat testing, and RA491 being fitted with the Rolls-Royce Avon, an axial-flow engine. From their involvement in the development of the Meteor’s engines, Armstrong-Siddeley, Bristol Aircraft, Metropolitan-Vickers, and de Havilland also independently developed their own gas turbine engines.

(Photo: Paul Nelhams)
Performance
During development, sceptical elements of the Air Ministry had expected mature piston-powered aircraft types to exceed the capabilities of the Meteor in all respects except that of speed; thus, the performance of early Meteors was considered favourable for the interceptor mission, being capable of out-diving the majority of enemy aircraft. The conclusion of in-service trials conducted between the Meteor F.3. and the Hawker Tempest V was that the performance of the Meteor exceeded the Tempest in almost all respects and that, barring some manoeuvrability issues, the Meteor could be considered a capable all-round fighter. Pilots formerly flying piston-engine aircraft often described the Meteor as being exciting to fly. Ex-RAF pilot Norman Tebbit stated of his experience of the Meteor: “Get airborne, up with the wheels, hold it low until you were about 380 knots, pull it up and she would go up, well we thought then, like a rocket”.
Early jet engines consumed a lot more fuel than the piston engines they replaced so the Welland engines imposed considerable flight-time limitations on the Meteor F.1, leading to the type being used for local interception duties only. In the post-war environment, there was considerable pressure to increase the range of interceptors to counter the threat of bombers armed with nuclear weapons. The long-term answer to this question was in-flight refuelling; several Meteors were provided to Flight Refuelling Limited for trials of the newly developed probe-and-drogue refuelling techniques. This capability was not incorporated in service Meteors, which had already been supplanted by more modern interceptor aircraft at this point.
A total of 890 Meteors were lost in RAF service (145 of these crashes occurring in 1953 alone), resulting in the deaths of 450 pilots. Contributory factors in the number of crashes were the poor brakes, failure of the landing gear, the high fuel consumption and consequent short flight endurance (less than one hour) causing pilots to run out of fuel, and difficult handling with one engine out due to the widely set engines. The casualty rate was exacerbated by the lack of ejection seats in early series Meteors; the much higher speed that the aircraft was capable of meant that to bail out pilots might have to overcome high g forces and fast-moving airflow past the cockpit; there was also a greater likelihood of the pilot striking the horizontal tailplane. Ejection seats were fitted in the later F.8, FR.9, PR.10 and some experimental Meteors. The difficulty of baling out of the Meteor had been noted by pilots during development, reporting several contributing design factors such as the limited size and relative position of the cockpit to the rest of the aircraft, and difficulty in using the two-lever jettisonable hood mechanism.